It seems that we sometimes believe that, consciously, we make a decision to have a drink, be it wine, spirits or beers but most often we've been duped because it is the deeper machinations of our brain, our mind and our genes that ultimately make these decisions; that we are in control is an illusion. But the brain is kind and it allows us to believe that we are in control; so cute . . .
If you want a good memory, perhaps have apple juice?
This is a really interesting study, the scientists determined that alcohol hijacks the function of a certain gene's expression, rather subtly though, that leads toward addiction. Using fruit flies, because their brain is functionally like ours but easier to study, they tested their hypothesis by switching certain genes off and on. So, science has proved, in this and many other trials, that by switching genes on and off, they can alter brain function and consequently, human behaviour.
Of course, that method of gene/neurotransmission intervention is nothing new, they've been doing this with SSRI's (selective serotonin reuptake inhibitor) and SNRI's (serotonin-norepinephrine reuptake inhibitors) for years. So, when scientists have proved, that when they play around with gene expression, they can cause behavioural changes. So, how can we translate that hypno-therapeutically? Well, let's say a client comes into my office with a problem, say alcohol, smoking, anxiety and a few sessions later, they no longer have that problem, has there been changes in the brain through mind-based self-regulating gene expression? It would certainly appear that way because changes in behaviour have to reflect changes at the neurological level. Yet no drugs were used, only the mind of the client. Hypnosis-therapy, through its ability to reorganize neurotransmission, and subsequently, gene expression, for me, proves that the brain, via its language, the mind, can manage itself to alter its function and consequently learn new behaviours that change the way we experience life!
Sometimes though, it can be a little more challenging and this is a consequence of multiple life experiences that have essentially the same properties but adapt and maladapt (kind of like cross-pollination), where the mental and emotional qualities of one issue get connected to another. This happens as a consequence of maladapted neuroplasticity (aka fear conditioning), wherein the qualities of a conditioned response (e.g. a bell), takes on all the qualities of an unconditioned response (e.g. an electric shock). It starts with a process called paring, where the researcher will ring the bell and shock the floor, the subject (usually a lab rat) reacts to the shock and subconsciously begins to associate the bell with the shock. Over time, usually a few hours, the researcher stops the shock and just rings the bell, with the rat responding to is, as if it were a shock. This is how much of human behaviour develops and even though most people, when they have that first drink, do not find it pleasing, the brain gets a stimulation, through the alcohol, that it enjoys and thus, it begins to influence us to have another and another and so on. Of course, we occasionally kind of kid ourselves into believing that we enjoy a beer or a certain type of wine or spirit but essentially, the driver behind all these choices, is the brain and they are delivered to us, consciously, via its spokesperson; the mind! Life takes on all the qualities of greatness when we get the conscious and the subconscious on the same page and hypnosis is the vehicle that drives that process!
Hypnotherapy stands out as one of the most effective strategic life management methods there is, especially in its ability to promote good states of mental wellness. The behaviours that make life challenging are often a result of dysregulation of the neurotransmission in and across the brain (tantamount to mind management), although many people perceive that alcohol has some benefits, benefits that make life seem more tolerable, more fun etc. but long term, there are no benefits! So, to take back control of your mind and your life, it makes perfect sense to use a methodology that addresses the subconscious mind's role in perpetuating negative, vague and ambiguous states of mind. Hypnosis helps us to create calm relaxing states of mind that make life work better! If you would like to address any concerns you have in this direction, or, if you just want to make your life feel better, then why not make an appointment for a Free Consultation? Hypnosis gives you the ability to have a good life!
The objective here is to help people understand how and why we become illogically trapped into irrational emotional experiences that may actually be happening for reasons different to that which we would imagine! If you want to know more about how Hypnotherapy can help you; why not make an appointment for a Free Consultation?
For more information on the Free Consultation - Go Here Or, to book your Free Consultation today, you can do so here
The Research:
One of the many challenges with battling alcohol addiction and other substance abuse disorders is the risk of relapse, even after progress toward recovery. Even pesky fruit flies have a hankering for alcohol, and because the molecular signals involved in forming flies' reward and avoidance memories are much the same as those in humans, they're a good model for study.
A new study in flies finds that alcohol hijacks this memory formation pathway and changes the proteins expressed in the neurons, forming cravings. Just a few drinks in an evening changes how memories are formed at the fundamental, molecular level. The findings were published on Thursday, Oct. 25, in the journal Neuron.
Karla Kaun, assistant professor of neuroscience at Brown University and senior author on the paper, worked with a team of undergraduates, technicians and postdoctoral researchers to uncover the molecular signalling pathways and changes in gene expression involved in making and maintaining reward memories.
"One of the things I want to understand is why drugs of abuse can produce really rewarding memories when they're actually neurotoxins," said Kaun, who is affiliated with Brown's Carney Institute for Brain Science. "All drugs of abuse -- alcohol, opiates, cocaine, methamphetamine -- have adverse side effects. They make people nauseous or they give people hangovers, so why do we find them so rewarding? Why do we remember the good things about them and not the bad? My team is trying to understand on a molecular level what drugs of abuse are doing to memories and why they're causing cravings."
Once researchers understand what molecules are changing when cravings are formed, then they can figure out how to help recovering alcoholics and addicts by perhaps decreasing how long the craving memories last, or how intense they are, Kaun said.
Molecular manipulation
Fruit flies have only 100,000 neurons, while humans have more than 100 billion. The smaller scale -- plus the fact that generations of scientists have developed genetic tools to manipulate the activity of these neurons at the circuit and molecular level -- made the fruit fly the perfect model organism for Kaun's team to tease apart the genes and molecular signalling pathways involved in alcohol reward memories, she said.
Led by postdoctoral researcher Emily Petruccelli, who is now an assistant professor with her own lab at Southern Illinois University, the team used genetic tools to selectively turn off key genes while training the flies where to find alcohol. This enabled them to see what proteins were required for this reward behaviour.
One of the proteins responsible for the flies' preference for alcohol is Notch, the researchers found. "Notch" is the first "domino" in a signalling pathway involved in embryo development, brain development, and adult brain function in humans and all other animals. Molecular signalling pathways are not unlike a cascade of dominos -- when the first domino falls (in this case, the biological molecule activates), it triggers more that trigger more and so on.
One of the downstream dominos in the signalling pathway affected by alcohol is a gene called a dopamine-2-like receptor, which makes a protein on neurons that recognize dopamine, the "feel-good" neurotransmitter.
"The dopamine-2-like receptor is known to be involved in encoding whether a memory is pleasing or aversive," Petruccelli said. And alcohol hijacks this conserved memory pathway to form cravings.
In the case of the alcohol reward pathway studied, the signalling cascade didn't turn the dopamine receptor gene on or off, or increase or decrease the amount of protein made, Kaun said. Instead, it had a subtler effect -- it changed the version of the protein made by a single amino acid "letter" in an important area.
"We don't know what the biological consequences of that small change are, but one of the important findings from this study is that scientists need to look not only at which genes are being turned on and off, but which forms of each gene are getting turned on and off," Kaun said. "We think these results are highly likely to translate to other forms of addiction, but nobody has investigated that."
The team is continuing its work by studying the effects that opiates have on the same conserved molecular pathways. Additionally, Kaun is working with John McGeary, assistant professor of psychiatry and human behaviour at Brown, to look at DNA samples from patients with alcohol abuse disorders to see if they have genetic polymorphisms in any of the craving-related genes discovered in flies.
"If this works the same way in humans, one glass of wine is enough to activate the pathway, but it returns to normal within an hour," Kaun said. "After three glasses, with an hour break in between, the pathway doesn't return to normal after 24 hours. We think this persistence is likely what is changing the gene expression in memory circuits.
"Just something to keep in mind the next time you split a bottle of wine with a friend or spouse," she added.
In addition to Kaun and Petruccelli, other authors from Brown were technician Michael Feyder; undergraduate Nicolas Ledru; undergraduate Yanabah Jaques, who is continuing her research in Kaun's lab through a Postbaccalaureate Research Education Program; and postdoctoral researcher Edward Anderson.
The National Institutes of Health (grant R01AA024434, COBRE grant P20GM103645, and RI-INBRE grant P20GM103430) funded the research.
Story Source:
Materials provided by Brown University. Note: Content may be edited for style and length.
Journal Reference:
- Emily Petruccelli, Michael Feyder, Nicolas Ledru, Yanabah Jaques, Edward Anderson, Karla R. Kaun. Alcohol Activates Scabrous-Notch to Influence Associated Memories. Neuron, 2018; DOI: 10.1016/j.neuron.2018.10.005
Cite This Page:
Brown University. "Just a few drinks can change how memories are formed." ScienceDaily. ScienceDaily, 25 October 2018. <www.sciencedaily.com/releases/2018/10/181025142050.htm>.